Теория вероятности
Monday, 3 September 2007 13:48![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Перефразируем известную задачку про телешоу с призами.
Вы заходите в общественный туалет. Перед вами три кабинки, все двери одинаково прикрыты, но ни одна не заперта. Вы пытаетесь угадать, какая из кабинок свободна, и решаете начать с крайней левой. В этот момент из правой кабинки раздаётся вздох и журчание. Следует ли вам изменить решение и заглянуть сначала в среднюю кабинку?
Вы заходите в общественный туалет. Перед вами три кабинки, все двери одинаково прикрыты, но ни одна не заперта. Вы пытаетесь угадать, какая из кабинок свободна, и решаете начать с крайней левой. В этот момент из правой кабинки раздаётся вздох и журчание. Следует ли вам изменить решение и заглянуть сначала в среднюю кабинку?
no subject
Date: Monday, 3 September 2007 11:22 (UTC)"Допустим вы НЕ МЕНЯЕТЕ ящик. Какова вероятность, что вы уйдете с призом?
Те, что говорят, что все равно менять или нет, видимо полагают, что 0.5
Но
1. Вы уйдете с призом только если вы первым выбором выбрали нужный ящик (трудно спорить)
2. Вероятность первым выбрать нужный ящик равна 1/3 (надеюсь несогласных не будет)
Честно говоря нечего добавить, если человек продолжает упорствовать, то это все равно, что 2x2=4 доказывать"
Я не спорю с тем, что тут в объяснении, действительно сложно спорить. Но и принять мне это сложно :)
no subject
Date: Monday, 3 September 2007 11:29 (UTC)Помнишь у Амарантины рассказ "Кот, мышь и десять ежей"? ;)
no subject
Date: Monday, 3 September 2007 11:33 (UTC)да я уже вчиталась в форумы с обсуждением приза в ящике, окончательно раздвоилась - и объяснение понимаю, и в то же время сломать стереотип "либо встречу, либо нет" не получается.